Tag Archives: digital

Shortwave Listening for Robots

When I was a kid my grandfather gave me a Hallicrafters S38-C, starting me down the road to radio madness. I had already been listening to AM Broadcast DX, though all I knew was I could hear the Red Sox games from other cities, like Chicago and Kansas City, late at night with my AM transistor radio under my pillow. Shortwave just blew my mind. I started to learn the bands, and some of the fixtures on those bands.

Shortwave in 2021 isn’t what it used to be. Most people comment on the decline in stations on the bands. That’s true, but I believe what they really mean is “big English-language international broadcasters” are fewer and weaker. Stations like BBC and Deutsche Welle no longer aim powerful signals to North America. We now hear a greater proportion of religious broadcasters, Latin American and Asian broadcasters, if we bother to listen at all.

Over the past year I found out about a program called Shortwave Radiogram. They broadcast a 30-minute MFSK program of text and images every week. Their programming runs on WRMI Radio Miami International and WINB in Pennsylvania. Check out their website for times and frequencies. It’s definitely worth your time.

The hardware required to participate is extremely simple. You can, and I have, decoded it via the microphone on the computer. No wiring or fancy interfaces needed. You can also just run a 3.5mm stereo patch from your radio to the computer soundcard. You aren’t transmitting so isolation shouldn’t be necessary. I use the same laptop rig I use for all my digital ham radio work because I usually have it set up and ready to go. I set FLDigi to RXID and it will switch modes based on the RXID header sent before each text block or image. The copy today was flawless. My rig was a Yaesu FT-991A with a DX Commander Expedition Vertical. I have done this with a Sony IC-7600G and the built in whip. You don’t need a monster SWL setup, just a receiver and a computer.

First, they play a spectrogram header which I never get around to screengrabbing. Then they have a few text articles of interest. Today I copied (most of) the broadcast. I made a mistake on my soundcard setting so I missed the beginning but captured this:

“…32 m (105ft) long, featuring the company’s own proprietary “Inductrack”
mag-lev technology and sensor-embedded “Vibranium” carbon fiber
skin.

It’s laid out some 320-odd m (1,050 ft) of fully functional test
track in France, vacuumed down to hundred-pascal pressure levels
lower than what you’d get at altitudes over 38,000 m (125,000
ft). It’s long enough to do some initial tests, but obviously not
to approach the 1,220+ km/h (760 mph) top speed the passenger
system is projected to hit when it’s got some room. The company
has signed some exciting-looking deals in India, China, the USA
and the United Arab Emirates over the last six or so years, but
no full-scale implementation seems to be under construction yet.

Fair enough; the World Bank estimated in 2014 that even a regular
high-speed train track costs somewhere between US$17 million (in
China) and $56 million (in California) per kilometer of track.
And that’s without putting the whole thing in a huge, airtight
tube with vacuum pumps and some of the largest, strongest
mechanical pressure valves ever built dotted along its length.
The up-front capital cost of a cross-continental supersonic
hyperloop system would be epic – but once up and running,
HyperloopTT says it could deliver “airplane speeds at freight
costs.”

The HyperPort development proposes to plug container shipping
logistics into the mix, with freight capsules designed to open at
the top and accept either two standard 6-meter (20-ft) shipping
containers or one double-length 12 to 13.7-m (40 to 45-ft) unit,
dropped in and picked up by the same sorts of gantry cranes that
already load and unload container ships. Freight speeds would be
limited to around 965 km/h (600 mph), so either the passenger
pods would have to slow down to this speed as well, or separate
tracks would be needed.

It’s all very pretty and futuristic-looking, and HyperloopTT says
it’s designed everything to meet current industry standards. The
HyperPort is now being submitted for certification design review,
and the company says the next step will be a VR demonstration, to
be presented at the ITS World Congress in Hamburg this October.

It’s a long and winding road from concept to reality, obviously.
And while a solution like this would indeed be much faster and
greener than the battalions of trucks that get the job done
today, battery and fuel cell trucks are on the way, ready to haul
containers to anywhere roads can take them, with zero local
emissions.

The crazy speeds promised by the HyperPort will come at a hefty
cost, but they could cut down a lot of road miles and get things
moving even faster in a world whose patience grows ever shorter.
I wonder if we’ll see this kind of thing get done – vacuum tube
transport seemed just years away back in the 1800s too. Between
Virgin Hyperloop, HyperloopTT, TransPod and other companies, it
seems investors feel this kind of thing is ready for prime time.”

https://newatlas.com/transport/hyperport-containers-hyperloop/

Hyperloop image accompanying above text, broadcast in MFSK 64

After this they broadcast a selection of images. Here are the images of the day, with the captions broadcast with them:

Deer on a shore of Loch Hourn, Scotland.
Sunset at Blackness, Scotland
Middletown, Maryland, facing west towards South Mountain, July
12 [2021]
A monarch butterfly flexes its wings in Marple Township,
Pennsylvania
The pier at Fontainebleau State Park, on the north shore of Lake
Pontchartrain, Louisiana
Betony, Betonica officinalis, at Jubilee County Park, London
Hybrid pimpinellifolia shrub rose (Rosa ‘Golden Wings’) at the
Arboretum at Penn State
Our painting of the week is “Usonian View” by Michelle Lewis

Check out the SWRadiogram website and give it a try. The ability to set this up for unattended decoding/recording makes it very convenient. Can you think of any other services (ARRL Maybe?) that could benefit, or act to the benefit of listeners with digital capabilities in this way?

73, Pete

Why So DGTL?

The current explosion of HF weak signal mode users, coalescing primarily around FT8/FT4, has caused a bit of a rift in the ham community. I don’t think the rift is that big, but the rifters are pretty vocal in telling other hams how much they don’t belong on the air.

I intended to formulate a Pro/Con list, but I don’t want this to be a contest (or con-test). I also don’t want to explore the negatives. Plenty of people are doing that 24/7 and somehow seem to enjoy (?) it. This is a list of things that make each type of communication interesting and unique (for me). I’d rather look at it that way because that is how I feel about it. I want to enjoy all that ham radio has to offer. That requires being open to what is positive about every opportunity.

So here’s what I find attractive about FT8-style* operation:

  1. The Analog Internet Nexus. In conjunction with PSKReporter, RBN, and tools like GridTracker, it provides a near-real-time propagation indicator. I can set up for a few CQs, check PSKReporter, and see where I am being heard, with my relative S/N. Along with showing me where I might expect a reply, it gives me an idea of the difference between what I am hearing and who might be hearing me.
  2. Instant and visual split operation. WSJT-X makes setting split very easy, but only if you use the waterfall display. (I believe many users don’t, causing that crowding between 1300-1800hz). Shift-Click to position your transmit frequency in a different spot, and get out of the pileup of stations calling on the CQing station’s transmit frequency. Since WSJT-X decodes the entire bandpass, you can test this at will. 10 minutes with the WSJT-X manual will improve the experience 100x.
  3. Constant Global Activity. It’s pretty shocking, actually. Day after day if I just looked at the CW or Phone sections of the HF bands they may look dead, or occupied mostly by big signals. Often there is a big hump on say 20m at 14.074MHz. In my experience it is unprecedented to have this type of activity acting as a global beacon. These digital segments are in use at all hours of the day and when the band opens those ops will be there.
  4. Built for Low Power Ops. Being able to work down to -24dB is a great equalizer for lower power stations on less-than-spectacular antennas. I see all kinds of amazed reactions from mostly newer hams on QRP-focused boards like the Icom IC705 FB group, and I can only imagine how amazed they will be when actual good band conditions start arriving. I’ve worked 10,000km on 10W into a basic vertical antenna on FT8, during conditions like SF=75, SSN=15! No solar tailwind there. For reasons I will get into somewhere else, a non-directional antenna is really only sending a tiny slice of its output toward the other station. Being able to work deep into the noise floor makes the most of that tiny slice.
  5. Perfect for casual operating. Letting WSJT-X decode while I am making dinner, or doing other chores, lets me come back and see what stations are in play at my station, on my gear, at what strength. I can take 15 minutes, scan the waterfall, and either chase a few stations or find a spot to call CQ. Obviously I can also do this for hours, but if I only have small gaps to focus on the radio I can still make contacts this way.
  6. Good operating practices are rewarded. Far from being a “robot mode” FT8 gives the operator a lot of information if they are willing to look for it. It allows you to scan for momentary openings, dig out weaker signals, find opportunities to use split, and otherwise be creative with the information presented by the waterfall and the decode window. I recently made a few contacts to JA from Rhode Island with stations that showed up for less than 5 minutes, and then faded out. Tools like GridTracker and JTAlert let you watch for those stations in real time. I’ve come close to working deep into northern Canada (VE8) in this same manner. I’ve also seen the big Saudi or Kenyan stations about 20 times and never made the contact. Surfing the waves of fading/swelling conditions is a technique I learned on CW over 25 years ago.

*FT8-style means computer-assisted digital modes, like RTTY, even. 2FSK is still FSK, folks. Get over yourselves.

OK, that was a rollercoaster of unbridled optimism. I’ll now make similar points for analog modes:

  1. The experience of listening to radio is one of life’s great joys. The key word is listening. I like quality in a QSO. Rarity and quantity have never been my game. I enjoy finding and working DX, but have never applied for or sought any awards. Listening to a quiet band for a weak but copyable signal (usually CW) just above the noise, replying to a CQ, and having a QSO (no matter how short or perfunctory) is a real pleasure. I’m not too hung up on where that other station is.
  2. The Social Component. I have worked plenty of stations, mostly SSB, where the QSO is call, report, name, QTH, and 73. Nothing wrong with that. It’s not much more of a proof of concept than a FT8 contact, but you are making verbal/code contact. Neat. Occasionally though I end up in a real rag chew, with a personable operator, and it is a great experience. I have to make sure I am in no hurry, because I have had a few that ran for a long time. That is ham radio delivering on what I would call the classic roots: Two or more operators having a chat. Lovely.
  3. A true leisure activity. My process of slowly scanning a section of a band, giving even the weakest signal a chance, tweaking my rig’s controls in an attempt to pull that signal out of the noise… it takes time. I might make one contact in an hour. I might make none. I have done some salmon fishing, and it is similar. My salmon fishing mantra is “it’s fishing, not shopping”. If you don’t enjoy the process of fishing you will be having a lot of bad days. If you have a catch, that’s great, but you are still fishing.
  4. Skill Development. The skills necessary to operate successfully on the ham bands are still best, IMO, cultivated with analog operation. Just the habits of ensuring your frequency is clear, or listening to and identifying neighboring stations, or learning the band plan and using it… they pay off whether you are talking to someone on 2M simplex 500 yards away, or making an APRS contact through the ISS, or bouncing a signal off the moon. It might be analogous to driving stick shift. I think you get a better learning experience when you engage the fundamentals as completely as possible.

So that’s a quick, stream of thought run through of how I see the allure of both “new school” and “old school” ham radio. It’s all out there to be done, and it’s all good. I hope to see or hear you on the bands. Pete N1QDQ

21st Century Schizoid Ham

This post is an attempt to bring my thoughts on the future of ham radio into focus through the lens of computerized digital modes. Last week I poured out a lengthy brain dump regarding digital modes, specifically FT8 and it’s associates. Three posts ago I went on about the evolution of communication modes. What I am focused on today is how radio hobbyists have embraced (or fought) the march of technology.

When radio was born the primary technologies being leveraged for more reliable communications were output power, antenna design, and modulation modes. That this is a fair description of the challenges faced by radio operators today is a testament to how strong the foundations of radio communications are. Just over 120 years ago Marconi was giddy at sending a coarse unmodulated signal across the English Channel. About 2 years later he sent a Morse Code “S” over the North Atlantic and it was received. From that primordial ooze advances in radio technology have been a succession of technological refinement and hybridization. Better tubes led to early solid state devices, led to (begat!) better solid state devices, led to the microprocessor and so on.

And that is how it should be. Most hams today use high tech in at least some part of their signal chain. The lack of enthusiasm for drifty VFOs and heavy transformers bears this out. Some of what I see in the commentary from today’s “old guard” is essentially a semantics debate, without the debate. Some want the technology used only inside their transceiver, but not “over the air”. Some are fine with one digital mode such as RTTY, but not another like FT8. Both employ a form of Frequency Shift Keying (FSK) and both rely on a machine to encode and decode text messages. This concept of using machines to do what the human body can’t is as old as the Stock Ticker. In the case of Radio Teletype (RTTY), could you learn to decode a two-tone encoding scheme by ear? Yep. Could you do it at RTTY speeds? Nope. We utilize a machine. That machine is now primarily a computer.

RTTY was first an analog process which gradually became computerized. Over the years the mechanical devices became museum pieces. One reason is electromechanical devices are entropy attractors. The wear out and break down and require mechanical repairs. Maintaining them means ready access to parts and service documentation. Certainly there are operators of mechanical RTTY terminals on the air, but they are in the minority (and I’m being generous). The era of “no serviceable parts inside” has mostly won the day here in the 21st Century. That’s a fact. I saw the transition from analog to digital firsthand as my father and grandfather both made their livings in electronics.

From the 1950s through the 1970s my grandfather owned and operated a TV and Appliance shop. He sold and repaired TV sets and radio consoles. His world was one of SAMS Photofact and a tube caddy and kept those TVs humming with his experience and some simple test equipment. The day the new TVs came with no service manuals he started to close his shop. That was almost 50 years ago. He saw the writing on the wall, and his mentality was fixed on keeping those sets in service. He was a product of the immigrant experience during a global depression and great scarcity. You did not throw things away. You repaired them until they were more valuable as parts, which you used to repair another set. The era of disposable consumer technology was his exit ramp from the business. He never changed. The world did. Far from being a luddite, he was an early adopter during the birth of technologies we take mostly for granted today. From the 1930’s onward he was right there jumping in on the birth of electrification, radio, television, and photography. He was my ur-geek.

As a child of a very different time I have been free to live in a world of unbridled futurism. I came of age during a great social awakening with social and technological changes happening at a blinding pace. I wasn’t so much dreaming of the future as I was living it. The space race fascinated me the way kids today get into dinosaurs or pokemon or whatever. I’ve been using actual computers since 1978. Before that I learned to do four function math on a Heath-Kit Hex Programming Trainer with NIXIE tube display. All I have seen is a steady drumbeat of miniaturization, automation, and leaps in electrical efficiency. I type this on an ultrabook weighing about two pounds and it the performance is fantastic. It draws about 1/50th of the power of my first PC-XT. The USB chip has more processing power than that 8088 had.

See, I’m digressing. I think you get the point. I will now focus!

My concern about the future of the technical evolution of ham radio has to do with the resistance to technical advances by some of the loudest voices in ham radio. And I do mean loudest. I like big antennas and I can not lie. You other ops can’t deny... But there are other ways to get the job done. In the case of FT8 we implement commodity computer hardware to expand the usable dynamic range down below what can be done with the human ear. This is not even all that high-tech. It is actually an extension of rather old tech, adapted to low cost CPU hardware.

Today’s hams largely operate in an early 20th Century manner, using 21st Century devices. We are often using a computer to emulate discrete component technology or even pure analog technology. That computer is often a “black box” running code we don’t understand on devices we can’t physically interact with. Most of this computerization isn’t a breakthrough, it is “re-platforming” of existing tech. While a boon to the operator it doesn’t seem to be equating into higher tech knowledge among the ham community. A survey of our publications, chat forums, and social media platforms show a continued focus on what should be Radio 101 topics: basic antennas, basic tuned circuits, basic inductors, the trans-match, the audio signal path… Yet I continue to see new hams struggling with the difference between rig control and audio, AC and DC, the concept of an IF, simple voltage/current concepts, and so on. One reason may be our teaching tools haven’t caught up with the pace of technology. Three-inch thick manuals in an age where bookstores are extinct might not be the way to get it done. #jussayin

At some point the practices and frameworks need to advance. We are doing ok, but we need to do better.

The Finale: I understand this is bordering on TABOO, but I’ll close this post with questions that I hope sum up my outlook on Amateur Radio as it waddles into the 21st Century:

Do our current band plans look like what we would draw up based on the technology we have at our disposal today?

As well, do our current band plans create a chilling effect on the adoption and implementation of new technologies?

Are we so anchored to the past that we have limited our ability to reach forward?

Can we create better technical standards, better education materials, and move toward better informed hams who can help move the pursuit forward and step beyond appliance operation?

I’m not pointing fingers (maybe a little). Those are questions I often ask about myself. I am largely an appliance operator. I build a few kits when I have time, make my own cables, build basic antenna systems, and am dedicated to self-education. I lean on a foundation of electronics basics and I want to learn more. But I also want to learn better.

I am using the FT8 discussion as a backdrop because we should be able to conceptualize how important decreasing the power and antenna requirements for ham radio is to the survival of the hobby. It is democratizing, and allows the ham radio experience to be enjoyed by the many. It also leans on tech that a 21st century ham takes completely for granted. If anything the challenge for today’s hams is adapting to the use of older tech that is used virtually nowhere else. The RS232 Serial Port is a great device, but try finding one on a modern computer. The urge to learn the technology is as strong as ever in the next generation of hams, we just need to lay a functional understanding of radio tech over that urge. That is difficult if the tech we are teaching and using is not current.

PostScript: I don’t see modes like FT8/JS8 as an end. I hope they are the foundation for more versatile and robust modes to come. We will always have SSB and CW and modes like RTTY. But unless we can get behind what the future holds we run the risk of being a bunch of radio-wielding Civil War reenactors. And one day we might show up to the battlefield and see a big CLOSED sign. Nobody wants that.

Who’s afraid of FT8?

Preface: I am planning on creating some posts addressing this in a more technical fashion. This is not a comprehensive tech essay full of footnotes. You either know what this is about or you don’t. For now I am sharing this brain dump addressed to all amateur radio operators. We find ourselves in a unique circumstance where great changes have occurred over a long period of low solar activity, and we are now emerging with some very real social turbulence in the ham radio ranks. I think it is useful to take a broad view of this pursuit, this service, and reflect on how we have moved forward, and how we can continue to move forward. 73, Pete N1QDQ

Let’s travel back to the heady days of 2010, when a new ham radio sensation called PSK31 was “taking over the ham bands”. It allowed users with less than massive transmitters and antennas to make reliable keyboard to keyboard contacts on HF. It wasn’t perfect. Many ops ran too much power, or had overdriven signals, or both, and the small stations had a bit of work to do to get through a QSO. The spectrum slices being used were narrow/cramped, and it didn’t take much to interfere with another op. You pretty much had to be on the same frequency/offset as the other station (not reliable in split mode) or it didn’t work, and a big wooly signal would wipe out a quarter of the subband. The advantage was that it took up about a tenth of the spectrum of a RTTY signal, and was more power-efficient. It also allowed many more operators to share the same slice of spectrum. As is the case today it was also a reason for the “big gun” stations to sneer down their noses and tell “lesser’ operators how they were killing ham radio.

FFW to today, and we are in much of the same predicament with a newer mode called FT8. It is even more flexible than PSK31, works at even lower signal to noise ratios, and is implemented primarily through one application called WSJT-X. It does not support anything much beyond the bare bones exchange of callsign, location and signal report. That makes sense since the suite of modes associated with Joe Taylor K1JT, Steve Franke, K9AN, and a cadre of experimenters was developed for very weak signal operations like Earth-Moon-Earth (EME) and Meteor Scatter. It turns out some of these modes, specifically FT8 and FT4, are very robust over traditional HF frequencies and propagation modes. And yet, despite allowing a large number of contacts over a small slice of spectrum, with lower power, and lower s/n ratios, FT8 users are again subject to ridicule by keepers of the mid-20th century technology flame. This extends to purposeful QRM, sneering memes about how FT8 ops are not real hams, how their QSOs don’t count, how it is “cheating”, and so on. Even as predictable as it is, it puts the ugly side of the “friendliest hobby” at the forefront of the much needed conversations around how our spectrum allocations are utilized, and how they will be used going forward.

Which is a shame, because these computer-controlled weak signal modes on the HF bands are nothing if not entirely consistent with the traditions of ham radio, and the central thesis of evolving to incorporate new technology as it emerges. The integration of existing and new technologies into radio communication is the hallmark of ham radio. What began as the transmission of Morse Code (tech adapted from the wired telegraph industry) using a spark gap transmitter, quickly evolved to a continuous-wave (CW) transmission based on the implementation of the vacuum triode as a tunable oscillator and amplifier. The spark-gap blasted RF across a big slice of RF spectrum. CW turned that on its head and allowed for more efficient narrow-band communications. Suddenly there was more room for more operators to communicate with less power over longer distances.

When modulated carrier audio came into being, it was double-sideband full carrier amplitude modulation, or AM. This is what we hear when we listen to the AM broadcast band. It takes a lot of power to generate that signal, and it also takes up a lot of spectrum. As the need arose for more efficient communications modes (portable equipment, lower power requirements, covering greater distances) it was found you could do away with the carrier (which was the reference frequency for the audio sidebands) and then one of the two sidebands. Thus Single Side-Band (SSB) was created. By giving the receiver the necessary oscillators to rebuild the audio information, the transmission could be made using much less power. This mode relied on the many improvements to vacuum tube technology, including miniaturization, lower power circuitry, and the use of multiple oscillators in new configurations. These fundamental modes of radio communication, data and audio, integrated new technology as it appeared, and hams were pivotal in their widespread adoption. As well, hams were pivotal in the development of new modes of radio communication based on these principles. They were, as now, radio experimenters. They were doing for free what governments were doing under much less liberated circumstances.

Radio technology eagerly adopted every advance in electronics tech, from vacuum tube minaturization, to the semiconductor, the integrated circuit, the standardization of component packaging, and then the microprocessor. Microprocessors were a natural fit for radio communications because they can manipulate control voltages and logic states at a blinding pace. The earliest and slowest microprocessors were adding communications capabilities beyond the analog realm. It also turned out you could emulate an oscillator with a microprocessor. Even at audio frequencies this was a giant leap for oscillator miniaturization and stability. Once these microprocessors were integrated into computing platforms, handling user input, program code execution, data storage, and data output, the modern era of computer/radio hybridization was in play.

It is simple enough to state that a radio station operating without some form of semiconductor and microprocessor technology is indeed a rarity. I know of no hams who are aching to go back to drifty oscillators and inefficient transmitters. Yes, that gear is still in use by a few stations, but I’ll bet each one has a modern rig right next to it. While modern technology has come to dominate the scene, all of the historical phases of electronics technology still have a place in the pursuit of radio communications (ok, maybe not spark gap). The fundamentals of radio still apply regardless of the technology.

So I ask, earnestly: How did this illustrious, enjoyable, and diverse pursuit of technology applied to radio communication become beholden to gatekeepers who selectively decide which modern technology is appropriate, and which they believe makes one a “fake ham”? It is almost universally the cry of hams who are “fortunate” enough to have a tower(s) supporting a big directional antenna(s) fed by a kilowatt(s) of RF, using modes established in the WWII era, who demand that they be crowned the gatekeepers of What Is Correct.

The facts are decidedly at odds with their position. If they were in any way in the majority it would be reflected in radio equipment sales and development. I believe the “average” ham has a somewhat modern 100W transceiver with a simple antenna, and a few helpful accessories. Additionally, they own a computer, which has become not only extremely cheap, but extremely effective. Somehow, in the middle of a deep and prolonged solar minimum, the airwaves are increasingly being used by many low power stations using compromised antennas, often with portability in mind. One reason this has been possible has been the development of modes like FT8. When you can run a 1-30W transceiver into a $20 homebrew end-fed wire, controlled by a $50 Raspberry Pi “toy” computer, and make a contact 10,000 miles away, it opens up the accessibility of radio communication in a myriad of ways. I made my first JA contact from my new QTH using 35W into a wire vertical, and FT8. It’s just as valid as any other contact.

I agree that the FT8 QSO is not very satisfying from a “chat about the weather and your radio” perspective. But let’s be honest, a typical CW conversation is name, location, rig, antenna, and brief weather observation. It’s fun. I love it. But it isn’t exactly deep bonding going on there. FT8 is giving the user more of a “contest mode” QSO. Being that it is good enough for the biggest stations in the world, as long as an actual contest is afoot (every weekend, #jussayin), why is it less appropriate in weak signal work? Maybe it’s has to do with the fear of losing status? Maybe it’s the need to ensure that kilowatt stations using 80 year old tech continue to dominate the way hams use their HF spectrum allocations in the 21st century? I can understand it, objectively, though I have not been able to assemble that kind of station. I also understand bullies. All too well. Ham radio needs to face up to the fact that it has a bully problem.

Unless you have been under a rock you know that every slice of the radio frequency spectrum is being eyed by some monied interest somewhere across the globe. Each time you see a nation kick their amateurs off an allocation it should raise an alarm. One would think the response of established spectrum users would be to promote increased usage and improved spectrum efficiency. It is counterintuitive to act as if relying more heavily on old tech is some kind of hedge against spectrum loss. I also fear that hams hold themselves to a standard that is not recognized outside of ham culture. An objective survey of the HF allocations would hear a small segment of intense activity in the bottom 100KHz, and then a lot of SSB voice spread out across the rest of the allocation.

My purpose here is to begin a conversation not end one. This is the scenery as I see it, from my perspective as a ham who has held an Extra Class license for almost all of my 27+ years of ham-life. I am often operating portable equipment, often at QRP or slightly higher power levels. I try to enjoy all that ham radio has to offer. I like HF QRP CW, as well as digital modes, as well as VHF/UHF contesting, as well as SSB, and SWL, and applied electronics concepts, and so on. I feel that there is a disturbing social pushback on the current practices and adaptations many hams have made in the era of condo rules, suburban/urban constraints, restricted public space access, and accommodating family and work life, by a small population of operators who don’t share those constraints. All of the tools available to hams have a place. And it is a great credit to hams everywhere that there is a general respect for gentleman’s agreements and international spectrum guidance. What I hope we see as this next solar cycle heats up is not just continued cooperation, but greatly enhanced cooperation. There is room for everyone, and every facet of the hobby. There has to be. The alternative is unimaginable, avoidable, loss.

Endnote: One piece of Amateur Radio News that spurred me to write this piece is this: FT8 Ruling The Airwaves from DXWorld.net. I believe it shows how a more efficient mode of communication increases the effectiveness of the power output on hand, and how attractive that is to many hams. I don’t think it is more complicated than that.